Distributed tracing and observability.
Gain insights into tracing and monitoring complex systems, ensuring observability and troubleshooting for distributed applications with ease.
Documentation
- The
kotlin
backend Spring Boot app directory is k8s-test. - The app contains only one api
/test
which return hello world message.
Hello, World!
Helm
Helm is a tool for managing Kubernetes charts. Charts are packages of pre-configured Kubernetes resources.
Helm is a tool that streamlines installing and managing Kubernetes applications.
- Get all helm releases
helm list
- Install Mysql using helm
helm install my-sql oci://registry-1.docker.io/bitnamicharts/mysql
- Validate mysql
kubectl kubectl get pods -w --namespace default
> Note:
Execute the following to get the administrator credentials:
echo Username: root
MYSQL_ROOT_PASSWORD=$(kubectl get secret --namespace default my-sql-mysql -o jsonpath="{.data.mysql-root-password}" | base64 -d)
To connect to your database:
1. Run a pod that you can use as a client:
kubectl run my-sql-mysql-client --rm --tty -i --restart='Never' --image docker.io/bitnami/mysql:8.0.34-debian-11-r31 --namespace default --env MYSQL_ROOT_PASSWORD=$MYSQL_ROOT_PASSWORD --command -- bash
2. To connect to primary service (read/write):
mysql -h my-sql-mysql.default.svc.cluster.local -uroot -p"$MYSQL_ROOT_PASSWORD"
- Get the mysql release secret as yaml
kubectl get secret --namespace default my-sql-mysql -o yaml
apiVersion: v1
data:
mysql-password: MWFVRkk3UTFPdw==
mysql-root-password: V0VIb3l4Vjc5WQ==
kind: Secret
metadata:
annotations:
meta.helm.sh/release-name: my-sql
meta.helm.sh/release-namespace: default
creationTimestamp: "2023-08-31T15:15:09Z"
labels:
app.kubernetes.io/instance: my-sql
app.kubernetes.io/managed-by: Helm
app.kubernetes.io/name: mysql
helm.sh/chart: mysql-9.12.1
name: my-sql-mysql
namespace: default
resourceVersion: "109476"
uid: cba38e54-c79f-40d4-b61e-ead7afc27bd0
type: Opaque
- Get the mysql password from the path direct
kubectl get secret --namespace default my-sql-mysql -o jsonpath="{.data.mysql-root-password}"
- Install Prometheus using helm
- Create kind cluster because it didn’t work on minikube
kind create cluster --name helm-test-cluster
# change the context to the new cluster
kubectl config use-context helm-test-cluster
- Install prometheus using helm
# Add prometheus helm repo
helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
# Validate repo added
helm repo list
# Update helm repo
helm repo update
#Install Helm Chart
helm install prometheus prometheus-community/kube-prometheus-stack
- Get created pods of helm prometheus installation
kubectl --namespace default get pods -l "release=prometheus"
#OR to see all created pods
kubectl get pods -o wide
# Node the grafana pods
- Validate the prometheus service so to access prometheus
kubectl get services
- Will access the prometheus using the grafana service
kubectl port-forward --namespace default service/prometheus-grafana 3000:80
- Access prometheus using the browser
http://localhost:3000
- Temp way of changing the service type
Edit the type from ClusterIP to NodePort
kubectl edit service prometheus-grafana
- Access the chart configuration
📝
This can be applied to any helm chart
helm show values prometheus-community/kube-prometheus-stack
- Direct the output to a file
helm show values prometheus-community/kube-prometheus-stack > prometheus-values.yml
- We are able to find the password on the yml for grafana
adminPassword: prom-operator
- OR we can use this command with linux to get the password
helm show values prometheus-community/kube-prometheus-stack | grep adminPassword
- Override the values
helm upgrade prometheus prometheus-community/kube-prometheus-stack --values helm-chart-values/prometheus-values.yml
- Override the values - admin password using cmd
helm upgrade prometheus prometheus-community/kube-prometheus-stack --set grafana.adminPassword=test.Password123
Login with new password to grafana. Make Sure to port-forward the service after again apply for new services and pods.
- Change the Cluster Service Type
Check Documentation Search GitHub
kubectl upgrade prometheus prometheus-community/kube-prometheus-stack --set grafana.service.type=NodePort
- OR - using the yml
service:
portName: http-web
type: NodePort
- Use override separate value file
helm upgrade prometheus prometheus-community/kube-prometheus-stack --values helm-chart-values/prometheus-override-values.yml
Avoid SnowFlack Server
📝 Note:
- Uninstall current chart
helm uninstall prometheus
- Pull remote helm chart
# It will be "helm pull + github.url "
# OR
# "Helm pull + added repo artifactory"
# This downloaded tar file
helm pull prometheus-community/kube-prometheus-stack
# This will untar the file
helm pull prometheus-community/kube-prometheus-stack --untar
- Helm install from local chart
helm install prometheus ./helm-charts/kube-prometheus-stack
- Validate the chart installed
helm list
kubectl get pods
kubectl get services
📝
Note: Don’t change in the values file instead make override file that override the values of the chart so whenever you want to upgrade the pulled chart you don’t need to edit one by one the updated value before. like filehelm-chart-values/prometheus-override-values-test1.yml
- Generate the yaml file from the helm chart
mkdir helm-charts
cd helm-charts
helm pull prometheus-community/kube-prometheus-stack --untar
cd ../
helm template prometheus ./helm-charts/kube-prometheus-stack > generated-helm-charts-yml/prometheus-generated.yml
📝
Note:Now we can use this yaml to create the application using this yaml there is no need to depend on the chart anymore. We can make the yaml as the source of truth for the application and this is the file we are going to maintain. This yaml should be stored on source-control, and it should be our own chart reference.
- Install the generated yaml.
kubectl create -f generated-helm-charts-yml/prometheus-generated.yml
Create Own chart.
📝
Note:The yaml in the templates folder will be an input of golang text processor.
helm create helm-test-chart
Delete the current yaml the template’s folder.
Add dummy yaml file to template folder
# helm-test-chart/templates/test1.yml
test:
test1: test1
# helm-test-chart/templates/test2.yml
test:
test2: test2
cd helm-test-chart
# This Will generate the yaml file from the templates folder and save into helm-test-chart.yaml
helm template helm-test-chart . > templates/helm-test-chart.yaml
- Use default yaml values file to place the values
# Create new chart k8s-app-test-chart
helm create k8s-app-test-chart
# Remove tempaltes files
rm -rf k8s-app-test-chart/templates/*
# Create new templates files - file in the source-control
touch k8s-app-test-chart/templates/deployment.yaml
touch k8s-app-test-chart/templates/service.yaml
- Update some values in the values.yaml
replicaCount: 1
image:
repository: ahmedgodaa/k8s-test
pullPolicy: IfNotPresent
# Overrides the image tag whose default is the chart appVersion.
tag: "v1.0.1"
- Generate the yaml file from the helm chart
# The Generated yaml file will be generated in the templates folder
cd k8s-app-test-chart
helm template k8s-app-test-chart . > generated/k8s-app-test-chart.yaml
📝
Note:This link contains the helm chart template guide - best practise https://helm.sh/docs/chart_template_guide/getting_started/
Pipeline Function.
# This will get the value from the values file
# If not present "ahmedgodaa" will be default
# After will lower the repository name
image: {{ .Values.image.repository | default "ahmedgodaa" | lower }}:{{ lower .Values.image.tag }}
- Use if statement with go templates
# If .Values.environment
# equal to "development" add -dev
# equal to "staging" add -stg
# equal to "production" add -prod
image: {{ .Values.image.repository | default "ahmedgodaa" | lower }}:{{ lower .Values.image.tag }}{{ if eq .Values. "development"}}-dev{{else if eq .Values.environment "staging" }}-stg{{else if eq .Values.environment "production"}}-prod{{end}}
Yaml Template
- it should be in the templates folder
- it should start with
_
underscore so exclude from the generated yaml file - it should end with .tpl extension
- it should start with define function and name of template
- it should end with end function .
Template file
{{ define "test-template" }}
metadata:
name: {{ .Values.environment }}
{{ end }}
Yaml File
the `-` after the brackets remove the white space before the line
apiVersion: v1
kind: Pod
{{- include "test-template" . }}
Space sensitive
include function can be used with pipelines but template function no.
- use indent function with include function to include the spaces
Yaml file
# Yaml
apiVersion: v1
kind: Pod
{{- include "test-template" . }}
{{- include "test2-template" . | indent 2}}
Templates file
{{- define "test-template" }}
metadata:
name: {{ .Values.appName }}
{{- end }}
{{- define "test2-template" }}
labels:
app: {{ .Values.appName }}
env: {{ .Values.environment }}
version: {{ .Values.image.tag }}
{{- end }}
- Install final helm chart
# Node: comment the yaml file "/templates/helm-test-chart.yaml"
# 1. generate the yaml - validation
helm template k8s-app-test-chart . > generated/k8s-app-test-chart.yaml
# 2. validate not exist chart
helm list
# 3. uninstall the chart
helm uninstall k8s-app-test-chart
# 4. install the chart
helm install k8s-app-test-chart ./helm-charts/k8s-app-test-chart --set environment=development
# 5. change to development namespace
kubectl config set-context --current --namespace=development
# 5. upgrade any value
helm upgrade k8s-app-test-chart ./helm-charts/k8s-app-test-chart --set any-attribute=any-value
📝
Note:
- Each namespace is different cluster, we need to deploy each namespace separately.
- Need login the namespace context deploy on it.
ArgoCD
ArgoCD is a declarative, GitOps continuous delivery tool for Kubernetes.
ArgoCD is the Agent between the desired Git Repository state and live state *Kubernetes Deployment.
Workflow without ArgoCD and Problems
- Push the code and the pipeline will be triggered and the pipeline will build the image and push it to the registry.
- Then the pipeline will deploy the image to the k8s cluster.
- Jenkins or Actions should update the version the yaml file or helm to deploy the new version. ❌
- It should install tools in the pipeline like kubectl to communicate with the cluster. ❌
- It should provide the cluster credentials to the pipeline to communicate with the cluster. ❌
- It should provide the aws credentials to the pipeline to communicate with the cluster. ❌
- Once apply the new changes to cluster, it will not be possible to know the status of the execution. ❌
Workflow with ArgoCD
- Push the code and the pipeline will be triggered and the pipeline will build the image and push it to the registry.
- Deploy ArgoCD to the cluster.
- Once the changes applied to the git repository, ArgoCD will detect the changes and will deploy the changes to the cluster.
📝
Note:
It is best practise to have the source code and the deployment files in separate repositories.
Because this files contains sensitive information like configmaps - secrets - certificates - ingress - services. ArgoCD support plane yaml, helm, kustomize, etc… .
ArgoCD Functions
ArgoCD compares the current state of the cluster with the desired state of the cluster in the git repository.
That means The git repository files will be single source of truth for the cluster.
ArgoCD can be configured manually and this will send alert to update this into the git repository as well.
ArgoCD benefit
- ArgoCD track the git repository.
- If we want to return the previous version we just need to revert the commit and ArgoCD will detect the changes and will.
- Deployments are versioned.
- No need to manually revert or delete updates of the cluster like kubectl uninstall or kubectl delete.
- Overcome of disaster recovery problem.
- No need to create cluster roles and user resources changes comes from pull request to the branch.
- Cluster Credentials no need to be outside the cluster anymore.
ArgoCD Configuration
ArgoCD CRD Custom Resource Definition
- ArgoCD use CRD to extend the k8s API.
- CRD allow to configure k8s using native k8s yaml files.
Example
apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
# object name
name: myapp-argo-application
# the application object will be created at the same namespace where argocd is running
namespace: argocd
spec:
# Projects provide a logical grouping of applications, which is useful when Argo CD is used by multiple teams.
# project is used when we have multiple applications and each belongs to different projects
# `default` project, which is created automatically and by default, permits deployments from any source repo, to any cluster,
# and all resource Kinds. The default project can be modified, but not deleted.
project: default
source:
# the git repository
repoURL: https://github.com/AhmedGodaa/Kubernetes.git
# trigger the last commit in the git repo
targetRevision: HEAD
# where the yaml will be applied is located
path: k8s-test/kubernetes
# where the application will located
destination:
# the default service at the default namespace of the cluster
# kubectl get services --namespace default
# because argocd is running inside the cluster we can access the services directly
# argocd can connected to cluster externally and syncronize the difinition to multiple clusters at once
server: https://kubernetes.default.svc
# where argocd should apply the yaml difinitions
namespace: development
syncPolicy:
# if the namespace is not exist create one
syncOptions:
- CreateNamespace=true
# automaticcally trigger changes at git repo and apply them
automated:
# undo and override any manual changes to the cluster
selfHeal: true
# By default (and as a safety mechanism), automated sync will not delete resources
# when Argo CD detects the resource is no longer defined in Git. To prune the resources,
# a manual sync can always be performed (with pruning checked). Pruning can also be enabled
# to happen automatically as part of the automated sync by running:
prune: true
Installation
kubectl create namespace argocd
kubectl config set-context --current --namespace argocd
kubectl apply -n argocd -f https://raw.githubusercontent.com/argoproj/argo-cd/stable/manifests/install.yaml
kubectl get svc
kubectl port-forward --namespace argocd service/argocd-server 8080:443
Username is: admin
and the password is autogenerated and saved in a secret argocd-initial-admin-secret
- Get the secret
kubectl get secret argocd-initial-admin-secret --namespace argocd -o yaml
echo "cDZLQzdZUkFITTItTnlqTQ==" | base64 -d
# OR
kubectl -n argocd get secret argocd-initial-admin-secret -o jsonpath="{.data.password}" | base64 --decode && echo
- Deploy online example
kubectl apply -f argocd/crd-application-test1.yml
- Deploy K8s app to ArgoCD
kubectl apply -f k8s-test/argocd/application.yml
Istio
Istio is an open-source service mesh that provides a key set of functionality across the microservices in a Kubernetes cluster.
Istio provides an easy way to create a network of deployed services with load balancing, service-to-service authentication, monitoring, and more, without requiring any changes in service code.
Istio supports managing traffic flows between microservices, enforcing access policies, and aggregating telemetry data, all without requiring changes to the microservice code.
Istio Components
- Traffic Management
- Security
- Observability
- Extensibility
Istio SlideCar Proxy
Handles all the network traffic between microservices.
Service Mesh will be created by injecting Istio SlideCar Proxy into each pod.
Microservices can talk to each other using the Istio SlideCar Proxy.
The Proxy is Service Mesh
Istio Control Plane
Manages the Istio proxies inside pods.
Istio CRD Custom Resource Definition
Istio can be configured using k8s yaml files.
Istio use Kubernetes CRD Custom Resource Definition
to extend the k8s API.
Types
- VirtualService
- DestinationRule
VirtualService
Configure the traffic rules to route the traffic to the correct service and correct version.
DestinationRule
Configure Traffic Policies for a specific service. What kind of Load Balancing to use.
📝
Note:
We don’t configure the proxies manually.
We configure the control-plane.
Istio will inject the proxies into the pods automatically.
Istio Configure Proxies
Istio have internal registry to store the configuration of the proxies.
When new microservice get deployed it will automatically registered to this registry.
Istio Automatically detect the services and endpoints of our application.\
Istio CM CA Certificate Authority | Management
Configure the certificates for the microservices to allow secure communication.
Istio Ingress Gateway
Alternative to k8s ingress controller.
Run as pod inside the cluster acts as load balancer.
Will map the traffic to the service using virtual service component.
MiniKube
Single Node Cluster
- Install Minikube
minikube start --driver=docker
- Start Minikube
minikube start
minikube start --cpus 8 --memory 3801
- Check Running
minikube status
minikube
type: Control Plane
host: Running
kubelet: Running
apiserver: Running
kubeconfig: Configured
- Validate minikube is ready
kubectl get nodes
NAME STATUS ROLES AGE VERSION
minikube Ready control-plane 118m v1.25.3
- Check k8s service deployment
kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 129m
- services that minikube support
minikube addons list
|-----------------------------|----------|--------------|--------------------------------|
| ADDON NAME | PROFILE | STATUS | MAINTAINER |
|-----------------------------|----------|--------------|--------------------------------|
| ambassador | minikube | disabled | 3rd party (Ambassador) |
| auto-pause | minikube | disabled | Google |
| cloud-spanner | minikube | disabled | Google |
| csi-hostpath-driver | minikube | disabled | Kubernetes |
| dashboard | minikube | disabled | Kubernetes |
| default-storageclass | minikube | enabled ✅ | Kubernetes |
| efk | minikube | disabled | 3rd party (Elastic) |
| freshpod | minikube | disabled | Google |
| gcp-auth | minikube | disabled | Google |
| gvisor | minikube | disabled | Google |
| headlamp | minikube | disabled | 3rd party (kinvolk.io) |
| helm-tiller | minikube | disabled | 3rd party (Helm) |
| inaccel | minikube | disabled | 3rd party (InAccel |
| | | | [info@inaccel.com]) |
| ingress | minikube | disabled | Kubernetes |
| ingress-dns | minikube | disabled | Google |
| istio | minikube | disabled | 3rd party (Istio) |
| istio-provisioner | minikube | disabled | 3rd party (Istio) |
| kong | minikube | disabled | 3rd party (Kong HQ) |
| kubevirt | minikube | disabled | 3rd party (KubeVirt) |
| logviewer | minikube | disabled | 3rd party (unknown) |
| metallb | minikube | disabled | 3rd party (MetalLB) |
| metrics-server | minikube | disabled | Kubernetes |
| nvidia-driver-installer | minikube | disabled | Google |
| nvidia-gpu-device-plugin | minikube | disabled | 3rd party (Nvidia) |
| olm | minikube | disabled | 3rd party (Operator Framework) |
| pod-security-policy | minikube | disabled | 3rd party (unknown) |
| portainer | minikube | disabled | 3rd party (Portainer.io) |
| registry | minikube | disabled | Google |
| registry-aliases | minikube | disabled | 3rd party (unknown) |
| registry-creds | minikube | disabled | 3rd party (UPMC Enterprises) |
| storage-provisioner | minikube | enabled ✅ | Google |
| storage-provisioner-gluster | minikube | disabled | 3rd party (Gluster) |
| volumesnapshots | minikube | disabled | Kubernetes |
|-----------------------------|----------|--------------|--------------------------------|
- Access minikube services
minikube dashboard
- Stop minikube
minikube stop
- Delete minikube cluster
minikube delete
Kind
Multi-Node Cluster
- Download kind
curl.exe -Lo kind-windows-amd64.exe --ssl-no-revoke https://kind.sigs.k8s.io/dl/v0.20.0/kind-windows-amd64
Move-Item .\kind-windows-amd64 c:\k8s\kind.exe
- Create Cluster
# This will create single node cluster
kind create cluster --name kind-cluster
- Create with configuration
# This will create cluster with 4 nodes 2 master-nodes 2 worker-nodes
kind create cluster --name multi-node-cluster --config cluster-config1.yml
# Login to the multi-node cluster
kubectl config use-context multi-node-cluster
# Get the 4 nodes that created in the cluster
kubectl get nodes
- Get cluster info
kubectl cluster-info --context kind-kind-cluster
Kubernetes control plane is running at https://127.0.0.1:65458
CoreDNS is running at https://127.0.0.1:65458/api/v1/namespaces/kube-system/services/kube-dns:dns/proxy
- Get clusters
kind get clusters
- Delete cluster
# name of the cluster without kind- prefix
kind delete cluster --name ahmed-cluster
Kube Config File
kubectl use to authenticate and login to cluster.
- Get clusters
kubectl config get-contexts
CURRENT NAME CLUSTER AUTHINFO NAMESPACE
docker-desktop docker-desktop docker-desktop
* kind-kind kind-kind kind-kind
minikube minikube minikube default
- Switch between clusters contexts
kubectl config use-context minikube
# Now any command will run on cluster - minikube
kubectl get nodes
kubectl get pods
- get kube config file directory
ls ~/.kube/config
Directory: C:\Users\ahmedgodaa\.kube
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 8/21/2023 9:24 PM 11926 config
Docker Registry
Docker registry is a repository to store docker images.
Public Docker Registry
- docker env required by minikube
minikube docker-env
$Env:DOCKER_TLS_VERIFY = "1"
$Env:DOCKER_HOST = "tcp://127.0.0.1:54613"
$Env:DOCKER_CERT_PATH = "C:\Users\EGYPT_LAPTOP\.minikube\certs"
$Env:MINIKUBE_ACTIVE_DOCKERD = "minikube"
# To point your shell to minikube's docker-daemon, run:
# & minikube -p minikube docker-env --shell powershell | Invoke-Expression
- Set System env
$Env:DOCKER_HOST = "tcp://127.0.0.1:54613"
- Validate env saved
echo $Env:DOCKER_HOST
- Rename exist docker image if build on local
docker tag k8s-test ahmedgodaa/k8s-test:v1.0.1
docker images
docker push ahmedgodaa/k8s-test:v1.0.1
- Create Deployment
kubectl apply -f dp-backend-dev.yml
- Create Service
kubectl apply -f k8s-test-service.yml
- Get IP
Since we expose our service as NodePort
We can able to access it using node ip and node port.
kubectl get nodes -o wide
- Get Nodes IPs - Minikube
NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP OS-IMAGE KERNEL-VERSION CONTAINER-RUNTIME
minikube Ready control-plane 3h37m v1.25.3 192.168.49.2 <none> Ubuntu 20.04.5 LTS 5.15.90.4-microsoft-standard-WSL2 docker://20.10.20
- OR
minikube ip
- Get Port - Service Port
kubectl get svc
k8s-test NodePort 10.108.198.207 <none> 8080:32485/TCP 8m35s
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 3h41m
- Access Application - Linux
# Access the service using node ip and node port
http://192.168.49.2:32485
- On windows
# Service should be exposed by minikube
minikube service k8s-test
|-----------|----------|-------------|---------------------------|
| NAMESPACE | NAME | TARGET PORT | URL |
|-----------|----------|-------------|---------------------------|
| default | k8s-test | 8080 | http://192.168.49.2:31089 |
|-----------|----------|-------------|---------------------------|
🏃 Starting tunnel for service k8s-test.
|-----------|----------|-------------|------------------------|
| NAMESPACE | NAME | TARGET PORT | URL |
|-----------|----------|-------------|------------------------|
| default | k8s-test | | http://127.0.0.1:51812 |
|-----------|----------|-------------|------------------------|
🎉 Opening service default/k8s-test in default browser...
❗ Because you are using a Docker driver on windows, the terminal needs to be open to run it.
- Access the service - Windows
# Access the service using tunnel
http://127.0.0.1:51812
Public Docker Registry
- Start Docker Registry Image
docker run -d -p 5000:5000 --restart=always --name private-registry registry:2
- Start Docker Registry Image Automatically
docker run -d -p 5000:5000 --restart=always --name registry registry:2
- get docker registry ip
docker inspect -f "{{ .NetworkSettings.IPAddress }}" private-registry
172.17.0.2
- Tag image
docker tag ahmedgodaa/k8s-test:v1.0.1 localhost:5000/k8s-test:v1.0.1
- Push image
docker push localhost:5000/k8s-test:v1.0.1
docker pull localhost:5000/k8s-test:v1.0.1
- Stop Docker Registry
docker stop private-registry
- Minikube Docker Registry
minikube addons enable registry
* registry is an addon maintained by Google. For any concerns contact minikube on GitHub.
You can view the list of minikube maintainers at: https://github.com/kubernetes/minikube/blob/master/OWNERS
╭──────────────────────────────────────────────────────────────────────────────────────────────────────╮
│ │
│ Registry addon with docker driver uses port 58201 please use that instead of default port 5000 │
│ │
╰──────────────────────────────────────────────────────────────────────────────────────────────────────╯
* For more information see: https://minikube.sigs.k8s.io/docs/drivers/docker
- Using image docker.io/registry:2.8.1
- Using image gcr.io/google_containers/kube-registry-proxy:0.4
* Verifying registry addon...
* The 'registry' addon is enabled
Access the registry - Manually
kubectl get namespaces
NAME STATUS AGE
default Active 18h
kube-node-lease Active 18h
kube-public Active 18h
kube-system Active 18h
kubernetes-dashboard Active 18h
- Get the services on the kube-system virtual cluster namespace
kubectl get svc --namespace kube-system
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kube-dns ClusterIP 10.96.0.10 <none> 53/UDP,53/TCP,9153/TCP 18h
registry ClusterIP 10.106.212.23 <none> 80/TCP,443/TCP 6m55s
Expose the registry service
- It uses ClusterIP, So we can’t directly access it from outside the cluster
- It can be port-forwarded to localhost:5000
kubectl port-forward --namespace kube-system service/registry 5000:80
- Validate the registry is accessible
curl http://localhost:5000/v2/_catalog
{"repositories":["k8s-test"]}
ECR
Repository to store docker images alternative to dockerhub, Nexus.
Amazon Elastic Container Registry (ECR) is a fully managed container registry that makes it easy to store, manage,
share, and deploy your container images and artifacts anywhere.
ECS
AWS Service to manage containers
ECS works as minikube or Kind cluster but on the cloud.
ECS is a container orchestration service that supports Docker containers and allows you to easily run and scale containerized applications on AWS.
ECS eliminates the need for you to install, operate, and scale your own cluster management infrastructure.
ECS is a regional service that simplifies running application containers in a highly available manner across multiple Availability Zones within a Region.
ECS is a great choice to run containers for several reasons.
First, it reduces the management overhead of running containers at scale.
Second, it provides security capabilities, such as IAM roles for tasks, that allow you to control access to your containers.
Finally, ECS integrates with other AWS services, such as Elastic Load Balancing, Amazon VPC, AWS IAM, and AWS CloudFormation, to provide a complete solution for running a wide range of containerized applications.
ECS with EC2
Requires Docker installed on EC2
Requires ECS Agent installed on EC2.
- Pros
full access to infrastructure.
- Cons
It Requires EC2 instances to run containers on.
It Requires Docker installed on EC2 instances.
Manage the Virtual Machines.
Check enough resources available on EC2 instances.
ECS with Fargate
Fargate is a technology that you can use with Amazon ECS to run containers without having to manage servers or clusters of Amazon EC2 instances.
Fargate is a serverless engine for containers that works with both Amazon Elastic Container Service (ECS) and Amazon Elastic Kubernetes Service (EKS).
Fargate removes the need to provision and manage servers, lets you specify and pay for resources per application.
Fargate check how uch CPU and memory your containerized application needs and it will launch the containers for you.
You don't have to select instance types or manage scaling.
- Pros
Don't pay for control plane.
Integrate with AWS services.
CloudWatch for monitoring.
Elastic Load Balancing for Loadbalancing.
IAM for security.
VPC for networking.
EKS
EKS make easy to migrate to another cloud provider.
Amazon Elastic Kubernetes Service (Amazon EKS) is a fully managed Kubernetes service.
Kubernetes is open-source software that allows you to deploy and manage containerized applications at scale.
EKS runs Kubernetes control plane instances across multiple Availability Zones to ensure high availability.
EKS automatically detects and replaces unhealthy control plane instances, and it provides automated version upgrades and patching for them.
EKS is also integrated with many AWS services to provide scalability and security for your applications.
- Pros
Full access to k8s ecosystem like helm.
- Cons
Pay for the control plane unlike ECS.
Migration from EKS to another cloud provider is not easy.
- How it works
Eks deploys and manages the control plane "master nodes".
Eks duplicate the control plane across multiple religious.
Eks replicate ETCD cluster across multiple religious.
Eks deploy worker nodes on virtual EC2 instances called "compute fleet" and connect to EKS.
The worker nodes are EC2 instances that run the Kubernetes kubelet agent.
Can be semi-managed by AWS or fully managed by AWS.
Eks with Fargate
Make fully-managed serverless compute engine for containers.
Using Fargate with Amazon EKS allows you to run Kubernetes pods without having to provision and manage EC2 instances.
Deployment
Create Deployment
- Create deployment with 3 replicaset
kubectl create deployment test-deployment --image=ahmedgodaa/k8s-test:v1.0.1
- Describe deployment.
This will show the deployment details like: Replicas - Selector - Strategy - Template - Containers
kubectl describe deployment test-deployment
Update Deployment
Update Deployment Command line
kubectl apply -f deployment/dp-backend-dev.yml
# Update Deployment
kubectl set image deployment/k8s-test k8s-test=ahmedgodaa/k8s-test:v1.0.1-dev
k8s-test
in the command, is the name of the container.
pod is creating and container is terminating
$ kubectl get all
NAME READY STATUS RESTARTS AGE
pod/k8s-test-7b9dd67d87-mptfp 1/1 Terminating 0 54m
pod/k8s-test-7b9dd67d87-sst8s 1/1 Running 0 54m
pod/k8s-test-fd8fdd5c-8qcxv 1/1 Running 0 31s
pod/k8s-test-fd8fdd5c-tdb9q 0/1 ContainerCreating 0 6s
Update Deployment Yaml
Using live edit
This Will Open text editor once update and close the editor the deployment will be updated.
kubectl edit deployment k8s-test
deployment.apps/k8s-test edited
Check the Update Status
kubectl rollout status deployment k8s-test
Waiting for rollout to finish: 2 out of 3 new replicas have been updated...
deployment "k8s-test" successfully rolled out
Rolling Back to a Previous Revision
Get All The History with Versions
kubectl rollout history deployment k8s-test
Rollback to Version
kubectl rollout undo deployment k8s-test --to-revision=2
deployment.apps/k8s-test rolled back
Scaling a Deployment
Upscale replicas to 5
kubectl scale deployment k8s-test --replicas=5
NAME READY STATUS RESTARTS AGE
pod/k8s-test-fd8fdd5c-5vg9k 0/1 ContainerCreating 0 5s
pod/k8s-test-fd8fdd5c-fskjx 0/1 ContainerCreating 0 5s
pod/k8s-test-fd8fdd5c-pbb7d 0/1 ContainerCreating 0 5s
pod/k8s-test-fd8fdd5c-pf56b 1/1 Running 0 5m34s
pod/k8s-test-fd8fdd5c-zckh6 1/1 Running 0 5m39s
Downscale replicas to 2
kubectl scale deployment k8s-test --replicas=2
NAME READY STATUS RESTARTS AGE
k8s-test-fd8fdd5c-5vg9k 1/1 Terminating 0 10m
k8s-test-fd8fdd5c-fskjx 1/1 Terminating 0 10m
k8s-test-fd8fdd5c-pbb7d 1/1 Terminating 0 10m
k8s-test-fd8fdd5c-pf56b 1/1 Running 0 16m
k8s-test-fd8fdd5c-zckh6 1/1 Running 0 16m
Auto scale
This will create k8s object HorizontalPodScaler hpa
kubectl autoscale deployment k8s-test --min=2 --max=5 --cpu-percent=90
horizontalpodautoscaler.autoscaling/k8s-test autoscaled
Get HPAs
kubectl get hpa
Delete HPA
kubectl delete hpa k8s-test
horizontalpodautoscaler.autoscaling "k8s-test" deleted
Pause and Resume a Rollout
Pause the deployment
kubectl rollout pause deployment k8s-test
Resume the deployment
kubectl rollout resume deployment k8s-test
Deployment Strategies
Rolling Update
Default strategy is RollingUpdate
maxSurge
max number of pods that can be created above the desired number of pods.
maxUnavailable
max number of pods that can be unavailable during the update process.
# it will not down all the pods when we rolling update only 30% of the pods `3 pods`
# it will not up all the pods when we rolling update only 30% of the pods `3 pods`
spec:
replicas: 10
strategy:
type: RollingUpdate
rollingUpdate:
maxSurge: 30%
maxUnavailable: 30%
Example
- Create deployment
- Change image from
v1.0.1
tov1.0.1-dev
- Deploy again
kubectl apply -f dp-backend-test2.yml
Recreate
the old pods will be all terminated before new pods are created. all new pods will be created at the same time.
📝
Note: This will cause downtime.
spec:
replicas: 10
strategy:
type: Recreate
Service
The selector
and targetPort
should be the same of the pod.
Service connect the pod using labels and selectors only.
Name of the pod is not important.
📝
Note:selector
is mandatory to be able to select the podstargetPort
is mandatory to equal thecontainerPort
containerPort
is mandatory expose the port inside the containertype
is mandatory to expose the service to outside the cluster
Service Types
- ClusterIP - Pods accessible only on the cluster.
- NodePort - Use node ip and node port to access outside cluster.
- LoadBalancer - Use with cloud providers load balancer controller.
- ExternalName - Use with endpoint object to access outside cluster.
- Headless - Access Pods directly, without service
External Name
Access Prometheus from outside the cluster
# Download Prometheus and run container
docker run -p 9090:9090 prometheus prom/prometheus
# Validate prometheus running
curl localhost:9090/metrcis
apiVersion: v1
kind: Service
metadata:
name: prometheus-service
spec:
type: NodePort
selector:
app: prometheus
ports:
- port: 80
targetPort: 9090
nodePort: 30000
Create Endpoint for the service
# Service Running on ip 10.104.86.59
apiVersion: v1
kind: Endpoints
metadata:
name: prometheus
subsets:
- addresses:
- ip: 10.104.86.59
ports:
- port: 9090
name: http
protocol: TCP
Ingress
Expose the service to outside the cluster.
Manage the traffic to the services.
Provide load balancing, SSL termination and name-based virtual hosting.\
Ingress Controller
In order for the Ingress resource to work, the cluster must have an ingress controller running.
Unlike other types of controllers which run as part of the kube-controller-manager binary, Ingress controllers are not started automatically with a cluster. Use this page to choose the ingress controller implementation that best fits your cluster.
Install
- Set node labels
kubectl label node/minikube ingress-ready=true
# Validate
kubectl describe node minikube
kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-nginx/controller-v1.0.0/deploy/static/provider/cloud/deploy.yaml
- OR - Using helm chart
helm repo add ingress-nginx https://kubernetes.github.io/ingress-nginx
helm repo update
cd helm-charts
helm pull ingress-nginx/ingress-nginx --untar
helm install ingress-nginx ./helm-charts/ingress-nginx
- Generate ingress-nginx yaml file
# generate the yaml file
helm template ingress-nginx ./helm-charts/ingress-nginx > ./generated-helm-charts-yml/ingress-nginx.yml
# show the values of the yaml
helm show values ./helm-charts/ingress-nginx > ./generated-helm-charts-yml/ingress-nginx-values.yml
Validate Ingress Controller Working
kubectl port-forward service/ingress-nginx-controller 80
curl 127.0.0.1:80
<!-- will return not found page now working-->
<!-- it didn't know where to map this request need ingress object-->
<html>
<head><title>404 Not Found</title></head>
<body>
<center><h1>404 Not Found</h1></center>
<hr>
<center>nginx</center>
</body>
</html>
Ingress Object
- Setup deployment and service
kubectl apply -f ./deployment/dp-backend-dev.yml
kubectl apply -f ./service/svc-backend-dev.yml
- Add Ingress Object to the service
kubectl apply -f ./ingress/ing-backend-test1.yml
- Access Ingress Object
# port-forward ingress controller service
kubectl port-forward service/ingress-nginx-controller 80
# access the app from the ingress
curl http://127.0.0.1/test
Hello, World!
Path Based Virtual Hosting
- This will follow the endpoint of the request
- If
/login
will map to log in service - If
/category
will map to category service
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: path-based-ingress
annotations:
kubernetes.io/ingress.class: nginx
spec:
defaultBackend:
service:
name: k8s-test
port:
number: 8080
rules:
- http:
paths:
- pathType: Prefix
path: /login
backend:
service:
name: login-service
port:
number: 8080
- pathType: Prefix
path: /category
backend:
service:
name: category-service
port:
number: 8080
Name Based Virtual Hosting
- This will follow domain of the request
- If
login.example.com
will map to log in service - If
catalog.example.com
will map to category service - If
example.com
will map to default service
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: name-based-ingress
annotations:
kubernetes.io/ingress.class: nginx
spec:
defaultBackend:
service:
name: k8s-test
port:
number: 8080
rules:
- host: login.example.com
http:
paths:
- pathType: Prefix
path: /
backend:
service:
name: login-service
port:
number: 8080
- host: catalog.example.com
http:
paths:
- pathType: Prefix
path: /
backend:
service:
name: catalog-service
port:
number: 8080
Namespaces
- To specify namespace in any k8s service ( Deployment - Service - ConfigMap - Secrets )
apiVersion: v1
kind: Deployment
metadata:
name: k8s-test
namespace: development
- To know which object accept namespace
kubectl api-resources --namespaced=true
Divide cluster to virtual clusters FE - BE - DB
Set Permissions:
BE only have access to DB cluster.
Payment Cluster fully isolated.
Device Cluster By environment. DEV - STAG - PROD
DEV: full access
STG: can ssh pods troubleshoot application
PROD: Read Access Check if application running
PROD: Jenkins - Actions - Authorized deployment pipline
K8s consists of multiple nodes Master - Worker
WR nodes expose CPU and Memory resources
Container demand the resources from WR nodes
K8s check available resources in each node
K8s assign new pods based on available resources
Each deployment can have his own namespace
Cluster have coast:
Each cluster: at least have 6 node
Have at least 3 master node. for high availability.
Have at least 3 external etcd cluster.
Have system components need to be deployed: promenades - alert-manager - ingress-controller.
Upgrade All Clusters - Manage Certificates - Adminstration.
Needed:
Maximum nodes in the cluster.
Create new cluster. - scale horizontally.
- Create Namespace
kubectl create namespace test-namespace
- Get Namespaces
kubectl get namespaces
- Get Pods in Namespace
kubectl get pods -n test-namespace
- Switch between namespaces
kubectl config set-context --current --namespace=test-namespace
- Validate current namespace
kubectl config view --minify
apiVersion: v1
clusters:
- cluster:
certificate-authority: C:\Users\ahmedgodaa\.minikube\ca.crt
extensions:
- extension:
last-update: Fri, 25 Aug 2023 10:01:13 EET
provider: minikube.sigs.k8s.io
version: v1.28.0
namespace: test-namespace
user: minikube
name: minikube
current-context: minikube
kind: Config
preferences: { }
users:
- name: minikube
user:
client-certificate: C:\Users\ahmedgodaa\.minikube\profiles\minikube\client.crt
client-key: C:\Users\ahmedgodaa\.minikube\profiles\minikube\client.key
- OR
kubectl config get-contexts
CURRENT NAME CLUSTER AUTHINFO NAMESPACE
docker-desktop docker-desktop docker-desktop
kind-kind kind-kind kind-kind
* minikube minikube minikube test-namespace
- Describe namespace
kubectl describe namespace test-namespace
- Return to default namespace
kubectl config set-context --current --namespace=default
- Delete namespace
kubectl delete namespace test-namespace
- Create namespace with yaml or json file
kubectl create -f namespace.yml
- Create development and production namespaces.
kubectl create -f https://k8s.io/examples/admin/namespace-dev.json
kubectl create -f https://k8s.io/examples/admin/namespace-prod.json
- Login into development namespace
kubectl config set-context --current --namespace=development
- Create deployment in development namespace
kubectl create deployment spring-test --image=ahmedgodaa/k8s-test:v1.0.1 --namespace=development
NAME READY STATUS RESTARTS AGE
spring-test-c7ff98855-n797g 1/1 Running 0 11s
Labels and Selectors
Labels are key/value pairs that are attached to objects, such as pods.
Labels are intended to be used to specify identifying attributes of objects that are meaningful and relevant to users, but do not directly imply semantics to the core system.
Labels can be used to organize and to select subsets of objects.
Labels can be attached to objects at creation time and subsequently added and modified at any time.
Each object can have a set of key/value labels defined.
Each Key must be unique for a given object.
Selectors are the core grouping primitive in Kubernetes.
They are used to identify a set of objects that are relevant for a particular user.
A selector can be defined as a set of requirements, and any object that matches those requirements exactly will be selected.
Requirements are separated into two categories: equality-based and set-based.
equality-based requirements allow filtering by label keys and values.
set-based requirements allow filtering based upon the presence or absence of labels.
Label
# have 4 labels app - type - version - env
# should match all of them to select the pod
apiVersion: v1
kind: Pod
metadata:
name: k8s-test
labels:
app: k8s-test
type: backend
version: v1.0.1
env: development
- Selectors example
apiVersion: apps/v1
kind: Deployment
metadata:
name: k8s-test
# labels: used when i try to access the deployment from the service
labels:
app: k8s-test
type: backend
env: development
version: v1.0.1
spec:
selector:
matchLabels:
app: k8s-test
type: backend
version: v1.0.1
env: development
template:
spec:
containers:
- name: k8s-test
image: ahmedgodaa/k8s-test:v1.0.1
Example
will create 2 deployment with different versions
- Deployment 1
metadata:
name: k8s-test
labels:
app: k8s-test
type: backend
version: v1.0.1
- Deployment 2
metadata:
name: k8s-test
labels:
app: k8s-test
type: backend
version: v1.0.2
- Create service
This service will expose only the pods with version v1.0.1 If version changed to v1.0.2 only service 2 will be exposed.
spec:
selector:
matchLabels:
app: k8s-test
type: backend
version: v1.0.1
Deployment Selector
- Labels and selector for deployment service explained
📝
NoteThe .spec.selector field defines how the created ReplicaSet finds which Pods to manage. In this case, you select a label that is defined in the Pod template (app: nginx). However, more sophisticated selection rules are possible, as long as the Pod template itself satisfies the rule.
Labels should be the same of the selectors
apiVersion: apps/v1
kind: Deployment
metadata:
name: k8s-test
namespace: development
# They provide metadata information about the deployment itself - used to accessed by other resources like services.
# Other services within the Kubernetes ecosystem can use these labels to identify and work with the deployment
# This will be associated with the deployment object
labels:
app: k8s-test
env: development
version: v1.0.1
spec:
# The selector field defines how the Deployment finds which Pods to manage.
# They help in selecting the pods that are controlled by this deployment.
# Other Kubernetes components, such as services or ingress controllers, can use these labels to establish connections or routing rules to the pods managed by this deployment.
selector:
matchLabels:
app: k8s-test
env: development
version: v1.0.1
replicas: 2
# The labels specified here are associated with the pods that will be created based on the template.
# These labels can be used for various purposes, such as pod selection, service discovery, or monitoring.
# Other services or components within the Kubernetes ecosystem can use these labels to target or interact with the pods created by this deployment.
# Pod template
template:
# By keeping the selector labels and template metadata labels the same
# you ensure that the pods created by the deployment will have labels
# matching the selector labels. This allows the deployment to manage and
# control the pods effectively.
metadata:
labels:
app: k8s-test
env: development
version: v1.0.1
spec:
containers:
- name: k8s-test
image: ahmedgodaa/k8s-test:v1.0.1
imagePullPolicy: IfNotPresent
ports:
- containerPort: 8080
Node Selector
nodeSelector is the simplest recommended form of node selection constraint. You can add the nodeSelector field to your Pod specification and specify the node labels you want the target node to have. Kubernetes only schedules the Pod onto nodes that have each of the labels you specify.
NODE SELECTOR IN POD AND NODE LABLES SHOULD BE THE SAME TO RUN THE POD INTO THAT NODE
- Example 1
# Pod
apiVersion: v1
kind: Pod
metadata:
name: k8s-test
spec:
nodeSelector:
app: monitoring
version: v1.0.1
containers:
- name: k8s-test
image: ahmedgodaa/k8s-test:v1.0.1
# Node
apiVersion: v1
kind: Node
metadata:
name: node-name
# nodeSelector and node labels should are the same.
labels:
app: monitoring
version: v1.0.1
Example 2
Use labels to select nodes to run the application on.
- Create kind cluster with 1 master node and 2 worker nodes
- Worker nodes have 2 different zones.
Create Cluster
# cluster-config2.yml have 1 master node and 2 worker nodes with different zones
kind create cluster --name test-cluster --config kind/cluster-config2.yml
- Get Nodes
kubectl get nodes
NAME STATUS ROLES AGE VERSION
multi-node-cluster-control-plane Ready control-plane 6m22s v1.27.3
multi-node-cluster-worker Ready <none> 5m55s v1.27.3
multi-node-cluster-worker2 Ready <none> 5m55s v1.27.3
- Get specific nodes in specific zone
kubectl get nodes --selector zone=us-west-b
NAME STATUS ROLES AGE VERSION
multi-node-cluster-worker2 Ready <none> 10m v1.27.3
- Create Pod - we will not be able to know which node will run the pod
kubectl create -f pod/test-pod1.yml
- Specify node to run the pod using nodeSelector in the yaml
- this will create node at all nodes with zone=us-west-b
# test-pod2.yml have nodeSelector with zone=us-west-b
kubectl create -f pod/test-pod2.yml
Nodes
- Get nodes
kubectl get nodes
- Create Cluster
kind create cluster --name test-cluster --config kind/cluster-config2.yml
- Get docker containers
# Kind create the node into docker container
docker ps
- Access master node container
# Master Node
docker exec -it multi-node-cluster-control-plane bash
# Worker Node
docker exec -it multi-node-cluster-worker bash
- See kubernetes components running on the master node
ps aux
#OR
ps -ef | grep kube
- Master node k8s component
1. kube-apiserver
2. kube-controller-manager
3. kube-scheduler
4. etcd
5. kubelet
6. kube-proxy
- Worker node k8s component
1. kubelet
2. kube-proxy
3. container runtime - containerd - docker
Kubelet
Agent running on all nodes report status of nodes and pods to master node
- Check kubelet status - after login into the node
systemctl status kubelet
- make problem into kubelet by move its configuration file
mkdir /temp/
mv /etc/kubernetes/kubelet.conf /temp/
- Restart kubelet process
systemctl restart kubelet
- Check the node - Node status will be NotReady
kubectl get nodes
# Node status will be NotReady because api-server not able to access to kubelet.
# Scheduler will not be able to assign pods on this node again.
NAME STATUS ROLES AGE VERSION
multi-node-cluster-control-plane Ready control-plane 19h v1.27.3
multi-node-cluster-worker NotReady <none> 19h v1.27.3
multi-node-cluster-worker2 Ready <none> 19h v1.27.3
- Solve the issue
mv /temp/kubelet.conf /etc/kubernetes/kubelet.conf
systemctl restart kubelet
systemctl status kubelet
NAME STATUS ROLES AGE VERSION
multi-node-cluster-control-plane Ready control-plane 19h v1.27.3
multi-node-cluster-worker Ready <none> 19h v1.27.3
multi-node-cluster-worker2 Ready <none> 19h v1.27.3
- Get pods running on a node
kubectl get pods -o wide --field-selector spec.nodeName=multi-node-cluster-worker
Node Maintenance
- Cordoning a node
# Cordoning a node will prevent scheduler from assigning new pods to this node
kubectl cordon multi-node-cluster-worker
- Drain OR Migrate all pods from a node
# Migrate all pods from a node to another node
kubectl drain multi-node-cluster-worker --ignore-daemonsets
- After maintenance - uncordon the node
kubectl uncordon multi-node-cluster-worker
Resources
Resource Quota - Quality of Service - Limit Range
Pods
Pod should not be a code runs for one time it will lead to CrashLoopBackOf or restart.
Pod should be running process like web server or database.
- Check Pod running on which node.
kubectl get pods -o wide
- Create Multi-Container Pod
kubectl create -f pod/test-pod3.yml
- Get logs from specific container
kubectl logs two-containers-pod -c k8s-test
- Access container shell
kubectl exec -it two-containers-pod -c k8s-test sh
- Make file inside the container
kubectl exec -it two-containers-pod -c k8s-test sh
touch /tmp/test.txt
- Copy file inside the container
# not working
kubectl cp E:\k8s\k8s\README.md two-containers-pod:/temp/README.md
Readiness Probe
Readiness probes are used to know when a pod is ready to serve traffic.
Readiness probes are defined in the pod spec.
- Example
Spring Boot Actuator provides a number of additional features to help you monitor and manage your application when it’s pushed to production.
Use the /actuator/health endpoint to get basic application health information.
apiVersion: v1
kind: Pod
metadata:
name: k8s-test
spec:
containers:
- name: k8s-test
image: ahmedgodaa/k8s-test:v1.0.1
imagePullPolicy: IfNotPresent
ports:
- containerPort: 8080
readinessProbe:
httpGet:
path: /actuator/health
port: 8080
httpHeaders:
- name: Custom-Header
value: to-ke-en-ex-am-pl-e
initialDelaySeconds: 5
periodSeconds: 5
Liveness Probe
liveness probe not implemented yet Reference
Liveness probes are used to know when a pod is alive or dead.
Liveness probes are defined in the pod spec.
Once the liveness probe fails a pod will be restarted.
Multi-Container Pods
Multi-Container Pods are pods that contain more than one container.
Multi-Container Pods are used in cases where multiple processes need to work together.
- Create Multi-Container Pod
# both containers have shared mount volume
kubectl create -f pod/test-pod4.yml
- Access the pod shell
kubectl exec -it sidecar-container-demo sh
- Use bash
bash
- Access Created Html file which created by debian container in the nginx container.
# this html file will be deployed on the nginx container
cd /usr/share/nginx/html
cat index.html
Resource Quota
ResourceQuota is a policy resource that specifies
compute resource requirements (such as memory and CPU)
and object count limits
(such as maximum count of pods per namespace) for namespaces.
Quality of Service
Quality of Service (QoS) is a concept in Kubernetes that allows the cluster to make intelligent scheduling decisions.
QoS is three classes:
Guaranteed
Burstable
BestEffort
Guaranteed:
The pod is guaranteed to have the requested resources available at all times.
If the node fails, the pod is guaranteed to be restarted on a node with the requested resources.
Guaranteed pods are the highest priority in the system.
If the cluster runs out of resources, the Guaranteed pods are the last to be evicted.
- Guaranteed
apiVersion: v1
kind: Pod
metadata:
name: guaranteed-pod
namespace: default
spec:
containers:
- Burstable
Burstable:
The pod is not guaranteed to have requested resources available at all times.
If the node fails, the pod may not be restarted on a node with the requested resources.
Burstable pods are the second highest priority in the system.
If the cluster runs out of resources, the Burstable pods are the second to be evicted.
- BestEffort
BestEffort:
The pod is not guaranteed to have requested resources available at all times.
If the node fails, the pod may not be restarted on a node with the requested resources.
BestEffort pods are the lowest priority in the system.
If the cluster runs out of resources, the BestEffort pods are the first to be evicted.
apiVersion: v1
kind: Pod
metadata:
name: besteffort-pod
namespace: default
Network Policy
How a pod is allowed to communicate with various network "entities" (other pods, Service endpoints, external IPs, etc).
Storage
- Storage Types
Storage
- Persistent Volume
- Persistent Volume Claim
- Storage Class
Persistent Volume PV
- Abstract Component should take storage from actual physical storage like
hard drive
,cloud provider
,s3
- PV are not namespaced
Persistent Volume Claim PVC
- Developers should configure their application yaml file to use persistent volume
- Applications has to claim that volume storage using PVC
- PVC are namespaced
📝 Note
PersistentVolumeClaim (PVC):
When a pod needs persistent storage, it makes a request via a PVC. The PVC specifies the storage requirements in terms of size, access mode, and optionally references a StorageClass.
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: k8s-test-pvc
spec:
storageClassName: k8s-test-storage-class # Reference to the "fast" StorageClass
accessModes: # access mode
- ReadWriteOnce
resources:
requests: # storage
storage: 10Gi
Storage Class
- Create Persistence Volumes Dynamically when pvc claims it
📝 Note
StorageClass Definition:
You define a StorageClass in your Kubernetes cluster with specific parameters that describe the type of storage you want to provision. These parameters might include things like the provisioner (the storage provider), access modes, and storage-related settings.
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: k8s-test-storage-class
provisioner: kubernetes.io/aws-ebs # The provisioner for AWS EBS volumes
parameters:
type: gp2 # The EBS volume type (e.g., gp2 for General Purpose SSD)
zone: us-west-1a # The availability zone
Secrets
Secrets Types
- Opaque
- Service Account Token
- Basic Auth
- SSH
- TLS - tls.crt - tls.key
- Docker Config
- Bootstrap Token
- Create Secret from ssh key
kubectl create secret generic ssh-key-secret --from-file=ssh-privatekey=.ssh/id_rsa --from-file=ssh-publickey=.ssh/id_rsa.pub
- Create Secret from env
# Create a new secret named my-secret from env files
kubectl create secret generic my-secret --from-env-file=path/to/foo.env --from-env-file=path/to/bar.env
# Create a new secret named my-secret from env values
kubectl create secret generic test-secret --from-literal=ENVIRONMENT=development --from-literal=PORT=8080
- Create Secret for TLS certificate
kubectl create secret tls tls-secret --cert=tls.cert --key=tls.key
ConfigMap
A ConfigMap provides a way to inject configuration data into pods. The data stored in a ConfigMap consumed by containerized applications running in a pod.
- Create configmap from file
kubectl create configmap test-config --from-file=configmap/application-prop-test.yml
ConfigMap Values shapes
- Property like key
- File
apiVersion: v1
kind: ConfigMap
metadata:
name: test-config-map
data:
# property like key
port: 8080
environment: development
apiVersion: v1
kind: Pod
metadata:
name: configmap-demo-pod
spec:
containers:
- name: k8s-test-container
image: ahmedgodaa/k8s-test:v1.0.0
env:
- name: ENVIRONMENT
valueFrom:
configMapKeyRef:
name: test-config-map
key: environment
Secrets with ConfigMaps
There is two ways to consume secrets and configmaps into the pod
- Key Value Pairs
- Files Mounted inside the pod
📝
Note:
- ConfigMap can be used as environment variables or as files in a volume.
- To Use File in the configmap you should use
volumeMounts
andvolumes
in the pod spec to mount the files.
Key Value Pairs
Use the configmap and secret direct as environment variables into the pod
- Create ConfigMap
apiVersion: v1
kind: ConfigMap
metadata:
name: test-config-map
data:
port: 8080
- Create Secret
apiVersion: v1
kind: Secret
metadata:
name: test-secret
type: Opaque
data:
password: admin
- Consume created configmap and secret into the pod.
apiVersion: v1
kind: Pod
metadata:
name: configmap-demo-pod
spec:
containers:
- name: k8s-test-container
image: ahmedgodaa/k8s-test:v1.0.0
ports:
- containerPort: 8080
env:
- name: PASSWORD
valueFrom:
secretKeyRef:
name: test-secret
key: password
- name: PORT
valueFrom:
configMapKeyRef:
name: test-config-map
key: port
Deploy k8s-test App With Secrets and ConfigMaps
- Decode values for the secret object
echo -n "mongodb://localhost:27017" | base64
- Deploy
kubectl apply -f k8s-test/kubernetes/secret.yml
kubectl apply -f k8s-test/kubernetes/configmap.yml
kubectl apply -f k8s-test/kubernetes/deployment.yml
kubectl apply -f k8s-test/kubernetes/service.yml
kubectl get pods
kubectl exec -it k8s-test-5968499cff-fjzbx sh
echo $MONGODB_URI
echo $MONGODB_DATABASE
mongodb://localhost:27017
test
Files
Mount the configmap and secret as files into the pod and the Container.
- Create ConfigMap with file
apiVersion: v1
kind: ConfigMap
metadata:
name: test-config-map
data:
# the name of the file and the content
application-prop-test.yml: |-
port: 8080
environment: development
- Create Secret with file
apiVersion: v1
kind: Secret
metadata:
name: test-secret
type: Opaque
data:
secret.file: |-
thepasswordexampleassecret
- Mount into the Pod
- Specify the configmap and secret into the volume this will make it accessible inside the pod.
- It should be accessible inside the container also.
- Specify the volumeMounts in the container to mount the volume into the container.
apiVersion: v1
kind: Pod
metadata:
name: configmap-demo-pod
spec:
containers:
- name: k8s-test-container
image: ahmedgodaa/k8s-test:v1.0.0
# where the configmap and secret will be saved inside the container
volumeMounts:
- name: config-volume
mountPath: /config
readOnly: true
- name: secret-volume
mountPath: /secret
readOnly: true
# create a volume to store the configmap
volumes:
# volume name
- name: config-volume
# the type of volume will be mounted - configmap
configMap:
name: test-config-map
# volume name
- name: secret-volume
# the type of volume will be mounted - secret
secret:
secretName: test-secret
Prometheus
Key Components of Prometheus:
Prometheus Server: Responsible for collecting and storing time-series data, evaluating alerting rules, and serving the Prometheus Query Language (PromQL) to query and retrieve data.
Prometheus Data Model: Is data stored and organized efficiently to facilitate fast querying and analysis.
Metrics Exporters: Prometheus relies on exporters, small applications or libraries that expose metrics in a format that Prometheus can scrape. Examples like Node Exporter for system metrics, and exporters for databases, web servers, and more.
PromQL: Prometheus Query Language (PromQL) is a powerful language used to query and manipulate time-series data. It allows you to perform aggregations, transformations, and calculations on metrics to gain insights into system behavior and performance.
📝
Note: PromQL can be replaced with grafana
AlertManager: Component responsible for handling alerts generated by the Prometheus server, define alerting rules and configure various notification channels like email, Slack, or webhook notifications.
Install Prometheus
- Install prometheus using helm
📝
Note: this part is duplicated in the helm section
Direct From Artifactory
2. Install prometheus using helm
```shell
# Add prometheus helm repo
helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
# Validate repo added
helm repo list
# Update helm repo
helm repo update
#Install Helm Chart
helm install prometheus prometheus-community/kube-prometheus-stack
Pull From Artifactory
- Pull chart and generate yaml files
cd helm-charts
helm pull prometheus-community/kube-prometheus-stack --untar
cd ../
helm template prometheus ./helm-charts/kube-prometheus-stack > generated-helm-charts-yml/prometheus-generated.yml
kubectl apply -f generated-helm-charts-yml/prometheus-generated.yml
- Validate all pods are running
kubectl --namespace default get pods -l "release=prometheus"
- Validate prometheus service so to access prometheus
kubectl get services
- Will access the prometheus using the
prometheus-grafana
service
kubectl port-forward --namespace default service/prometheus-grafana 3000:80
- Access prometheus using the browser
http://localhost:3000
- we can use this command with linux to get the password
helm show values prometheus-community/kube-prometheus-stack | grep adminPassword
- Override the values
helm upgrade prometheus prometheus-community/kube-prometheus-stack --values helm-chart-values/prometheus-values.yml
- Override the values - admin password using cmd
helm upgrade prometheus prometheus-community/kube-prometheus-stack --set grafana.adminPassword=test.Password123
Service Monitor
Custom Component
kubectl get servicemonitor
kubectl get servicemonitor prometheus-kube-prometheus-alertmanager -o yaml
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
📝
Note:
the service monitor should contain the labelrelease=prometheus
.
so prometheus can discover it in the cluster.
Example Application MongoDB
kubectl apply -f https://gitlab.com/nanuchi/youtube-tutorial-series/-/raw/master/prometheus-exporter/mongodb.yaml
📝
Note:
That is not the most right approach it should come from helm chart.
- Install exporter using helm
Direct From Artifactory
Not Recommended
helm install prometheus-mongodb-exporter prometheus-community/prometheus-mongodb-exporter
Pull From Artifactory
helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
helm repo update
helm pull prometheus-community/prometheus-mongodb-exporter --untar -d helm-charts
helm template prometheus-mongodb-exporter ./helm-charts/prometheus-mongodb-exporter > generated-helm-charts-yml/prometheus-mongodb-exporter-generated.yml
helm show values helm-charts/prometheus-mongodb-exporter > helm-chart-values/prometheus-mongodb-exporter-values.yml
- Override the service monitor values
- need to map the exporter to mongodb service by adding the service url to the values file under mongodb.uri="""
- need to add the label
release=prometheus
to be discovered by prometheus
Add MongoDB Service To Exporter
- Get the service name and the port
kubectl get svc
Add The Service Monitor Label
- Override values file
mongodb:
uri: "mongodb://mongodb-service:27017"
serviceMonitor:
enabled: true
additionalLabels:
release: prometheus
- Install the chart with override yaml
helm install prometheus-mongodb-exporter helm-charts/prometheus-mongodb-exporter -f helm-chart-values/prometheus-override-mongodb-exporter-values.yml
- Validate Installation
kubectl port-forward service/prometheus-mongodb-exporter 9216
curl http://127.0.0.1:9216/metrics
# example response
go_gc_duration_seconds{quantile="0"} 0
go_gc_duration_seconds{quantile="0.25"} 0
go_gc_duration_seconds{quantile="0.5"} 0
go_gc_duration_seconds{quantile="0.75"} 0
go_gc_duration_seconds{quantile="1"} 0
Prometheus with spring
Installation
- Install Prometheus and Grafana using helm
helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
helm repo update
helm pull prometheus-community/kube-prometheus-stack --untar -d helm-charts
helm template prometheus ./helm-charts/kube-prometheus-stack > generated-helm-charts-yml/prometheus-generated.yml
helm show values prometheus-community/kube-prometheus-stack > helm-chart-values/prometheus-override-values.yml
helm install prometheus helm-charts/kube-prometheus-stack -f helm-chart-values/prometheus-override-values.yml
- Install Loki Helm chart
helm repo add grafana https://grafana.github.io/helm-charts
helm pull grafana/loki --untar -d helm-charts
helm template loki ./helm-charts/loki > generated-helm-charts-yml/loki-generated.yml
helm show values grafana/loki > helm-chart-values/loki-values.yml
helm install loki helm-charts/loki -f helm-chart-values/loki-override-values.yml
- Install Tempo Helm chart
helm repo add grafana https://grafana.github.io/helm-charts
helm pull grafana/tempo --untar -d helm-charts
helm template tempo ./helm-charts/tempo > generated-helm-charts-yml/tempo-generated.yml
helm show values grafana/tempo > helm-chart-values/tempo-values.yml
helm install tempo helm-charts/tempo -f helm-chart-values/tempo-override-values.yml
Implement Logging using Loki
- Add Required Dependencies
// Adds Spring Boot Actuator, which provides production-ready features to help monitor and manage your application.
implementation("org.springframework.boot:spring-boot-starter-actuator")
// Integrates Micrometer with Prometheus, allowing you to collect application metrics and expose them in a format that Prometheus can scrape.
implementation("io.micrometer:micrometer-registry-prometheus")
// Provides a bridge between Micrometer and Brave, enabling tracing and instrumentation of your application using distributed tracing.
implementation("io.micrometer:micrometer-tracing-bridge-brave")
// Integrates Brave with Zipkin, allowing you to report tracing data to a Zipkin server for distributed tracing and analysis.
implementation("io.zipkin.reporter2:zipkin-reporter-brave")
// Adds support for monitoring and collecting metrics related to database calls using Micrometer. Helpful for understanding database performance.
implementation("net.ttddyy.observation:datasource-micrometer-spring-boot:1.0.1")
// Adds support for Aspect-Oriented Programming (AOP) in Spring Boot, which can be used for intercepting method calls and applying cross-cutting concerns.
implementation("org.springframework.boot:spring-boot-starter-aop")
// Integrates Logback with Loki, a log aggregation system. This allows you to send log entries to Loki for storage and analysis.
implementation("com.github.loki4j:loki-logback-appender:1.4.1")
- Add Actuator Configurations at application.properties
# Tracing
spring.application.name=${IRRIGATION_SERVICE_NAME}
# Configures collection of percentiles for HTTP server requests metrics.
management.metrics.distribution.percentiles-histogram.http.server.requests=${MANAGEMENT_METRICS_REQUESTS}
# Controls the probability of tracing requests for distributed tracing (0.0 - 1.0).
management.tracing.sampling.probability=${TRACING_PROBABILITY}
# Actuator
management.endpoint.health.show-details=${MANAGEMENT_ENDPOINT_HEALTH_SHOW_DETAILS}
management.endpoint.health.probes.enabled=${MANAGEMENT_ENDPOINT_HEALTH_PROBES_ENABLED}
management.health.livenessState.enabled=${MANAGEMENT_HEALTH_LIVENESS_STATE_ENABLED}
management.health.readinessState.enabled=${MANAGEMENT_HEALTH_READINESS_STATE_ENABLED}
management.endpoints.web.exposure.include=${MANAGEMENT_ENDPOINTS_WEB_EXPOSURE_INCLUDE}
Kafka
Kafka Main Concepts
Topic : A topic is a logical channel for organizing and categorizing messages,
Producers: Write messages to topics, and consumers read messages from topics
Consumer: Consumers are applications or processes that subscribe to Kafka topics and retrieve records from them.
Partition: Each topic can be divided into multiple partitions.
Broker: Brokers are individual Kafka server instances that store and manage topic data.
Consumer Group: Set of consumers that work together to consume data from one or more topics. Kafka ensures that each partition of a topic is consumed by only one consumer within a group. This allows to scale consumption horizontally by adding more consumers to a group.
Kafka Apis
- The Admin API to manage and inspect topics, brokers, and other Kafka objects.
- The Producer API to publish (write) a stream of events to one or more Kafka topics.
- The Consumer API to subscribe to (read) one or more topics and to process the stream of events produced to them.
- The Kafka Streams API to implement stream processing applications and microservices.
Installation
curl https://downloads.apache.org/kafka/3.5.1/kafka_2.12-3.5.1.tgz
tar -xzf kafka_2.13-3.5.0.tgz
mv kafka_2.13-3.5.0 kafka
cd kafka
- define logs file
Change data directory to dataDir=c:/kafka/zookeeper-data
at kafka/config/zookeeper.properties
Change the data directory to log.dirs=c:/kafka/logs
at kafka/config/server.properties
- Start Zookeeper
Windows
# Start Zookeeper
./bin/windows/zookeeper-server-start.bat config/zookeeper.properties
# Start Kfka Server
./bin/windows/kafka-server-start.bat config/server.properties
- Create Topic
./bin/windows/kafka-topics.bat --create --topic quickstart-events --bootstrap-server localhost:9092
# create topic with 3 partitions
./bin/windows/kafka-topics.bat --create --topic topic-multi-pr --bootstrap-server localhost:9092 --partitions 3 --replication-factor 1
- List topics
./bin/windows/kafka-topics.bat --list --bootstrap-server localhost:9092
kafka-topics.sh –list –bootstrap-server my-release-kafka-controller-headless.default.svc.cluster.local:9092 kafka-topics.sh –create –topic quickstart-events –bootstrap-server my-release-kafka-controller-headless.default.svc.cluster.local:9092
- Describe topic
./bin/windows/kafka-topics.bat --describe --topic topic-multi-pr --bootstrap-server localhost:9092
Topic: topic-multi-pr TopicId: MSzkjr0wTrO2jL61NxLAjg PartitionCount: 3 ReplicationFactor: 1 Configs:
Topic: topic-multi-pr Partition: 0 Leader: 0 Replicas: 0 Isr: 0
Topic: topic-multi-pr Partition: 1 Leader: 0 Replicas: 0 Isr: 0
Topic: topic-multi-pr Partition: 2 Leader: 0 Replicas: 0 Isr: 0
- Produce message inside topic
./bin/windows/kafka-console-producer.bat --topic quickstart-events --bootstrap-server localhost:9092
>Test Message!
>Test Message2!
- Consume messages - messages received at the same time
./bin/windows/kafka-console-consumer.bat --topic quickstart-events --from-beginning --bootstrap-server localhost:9092
Test Message!
Test Message2!